

Section 9.1

Basic Torms in Sirces

Radius - <u>a segment with one endpoint at</u> <u>the center of the circle (or</u> <u>sphere) and one endpoint on the</u> <u>circle (or sphere).</u>

"The distance away from the center of a Circle"

Chord: <u>a segment whose endpoints lie on</u> two different points on the circle. Example: DC

Diameter: <u>a chord that contains the</u> <u>center of the circle</u>. Example: AB

A diameter is twice the length of a radius.

Secant - a line that contains a chord.

Note: A chord and a secant can be named using the same letters. The notation tells you whether it is a secant or a chord. A secant is a line; a chord is a segment.

Secant: AB Chord: AB

Tangent - a line that intersects a circle at exactly one point. Not a

Example: \overrightarrow{AB}

Point of Tangency: The point at which the circle and the tangent intersect

tangent!

Example: A

Concentric Circles - <u>circles with the</u> <u>same center point.</u>

"Bulls Eye"

Inscribed Polygon: <u>All vertices</u> of a polygon are on the circle.

"This pentagon is inscribed inside of the circle."

Inscribed Circle: <u>When each</u> side of a polygon is tangent to a circle.

"This circle is inscribed inside of the pentagon."

Theorem 9-1

If a line is <u>tangent</u> to a circle, then the line is <u>perpendicular</u> to the <u>radius</u> drawn to the <u>point of tangency</u>.

Q is the center of the circle. C is a point of tangency.

Example: Given Circle Q with a radius length of 7. D is a point of tangency. DF = 24, find the length of QF.

Theorem 9-2

If a line in the plane of a circle is perpendicular to a radius at its outer endpoint, then the line is tangent to the circle.

This is the converse of Theorem 9-1.

Corollary: <u>Tangent segments</u> from a point to a circle are <u>congruent</u>.

If <u>AB</u> and <u>BC</u> are tangent segments to circle Q, then, <u>AB</u> \cong <u>BC</u>. Example: Given circle Q with tangent segments GH and HF, find the m \angle HGF.

F Isosceles Triangle Theorem allows us to say that \angle HGF \cong \angle HFG.

32°

32°

G

X	+	×	+	3	2		180
		2>	K =		14	48	
		>	κ =		74	4	

m∠HGF = 74

Tangent Circles - <u>coplanar circles that</u> <u>are tangent to the same line at</u> the same point.

Internally Tangent Circles

Externally Tangent Circles